Course Curriculum
- 9 sections
- 105 lectures
- 3 hours, 52 minutes total length
-
Welcome to the course!00:01:00
-
Introduction to Python00:01:00
-
Setting up Python00:02:00
-
What is Jupyter?00:01:00
-
Anaconda Installation: Windows, Mac & Ubuntu00:04:00
-
How to implement Python in Jupyter?00:01:00
-
Managing Directories in Jupyter Notebook00:03:00
-
Input/Output00:02:00
-
Working with different datatypes00:01:00
-
Variables00:02:00
-
Arithmetic Operators00:02:00
-
Comparison Operators00:01:00
-
Logical Operators00:03:00
-
Conditional statements00:02:00
-
Loops00:04:00
-
Sequences: Lists00:03:00
-
Sequences: Dictionaries00:03:00
-
Sequences: Tuples00:01:00
-
Functions: Built-in Functions00:01:00
-
Functions: User-defined Functions00:04:00
-
Installing Libraries00:01:00
-
Importing Libraries00:02:00
-
Pandas Library for Data Science00:01:00
-
NumPy Library for Data Science00:01:00
-
Pandas vs NumPy00:01:00
-
Matplotlib Library for Data Science00:01:00
-
Seaborn Library for Data Science00:01:00
-
Introduction to NumPy arrays00:01:00
-
Creating NumPy arrays00:06:00
-
Indexing NumPy arrays00:06:00
-
Array shape00:01:00
-
Iterating Over NumPy Arrays00:05:00
-
Basic NumPy arrays: zeros()00:02:00
-
Basic NumPy arrays: ones()00:01:00
-
Basic NumPy arrays: full()00:01:00
-
Adding a scalar00:02:00
-
Subtracting a scalar00:01:00
-
Multiplying by a scalar00:01:00
-
Dividing by a scalar00:01:00
-
Raise to a power00:01:00
-
Transpose00:01:00
-
Element wise addition00:02:00
-
Element wise subtraction00:01:00
-
Element wise multiplication00:01:00
-
Element wise division00:01:00
-
Matrix multiplication00:02:00
-
Statistics00:03:00
-
What is a Python Pandas DataFrame?00:01:00
-
What is a Python Pandas Series?00:01:00
-
DataFrame vs Series00:01:00
-
Creating a DataFrame using lists00:03:00
-
Creating a DataFrame using a dictionary00:01:00
-
Loading CSV data into python00:02:00
-
Changing the Index Column00:01:00
-
Inplace00:01:00
-
Examining the DataFrame: Head & Tail00:01:00
-
Statistical summary of the DataFrame00:01:00
-
Slicing rows using bracket operators00:01:00
-
Indexing columns using bracket operators00:01:00
-
Boolean list00:01:00
-
Filtering Rows00:01:00
-
Filtering rows using & and | operators00:02:00
-
Filtering data using loc()00:04:00
-
Filtering data using iloc()00:02:00
-
Adding and deleting rows and columns00:03:00
-
Sorting Values00:02:00
-
Exporting and saving pandas DataFrames00:02:00
-
Concatenating DataFrames00:01:00
-
groupby()00:03:00
-
Introduction to Data Cleaning00:01:00
-
Quality of Data00:01:00
-
Examples of Anomalies00:01:00
-
Median-based Anomaly Detection00:03:00
-
Mean-based anomaly detection00:03:00
-
Z-score-based Anomaly Detection00:03:00
-
Interquartile Range for Anomaly Detection00:05:00
-
Dealing with missing values00:06:00
-
Regular Expressions00:07:00
-
Feature Scaling00:03:00
-
Introduction00:01:00
-
Setting Up Matplotlib00:01:00
-
Plotting Line Plots using Matplotlib00:02:00
-
Title, Labels & Legend00:07:00
-
Plotting Histograms00:01:00
-
Plotting Bar Charts00:02:00
-
Plotting Pie Charts00:03:00
-
Plotting Scatter Plots00:06:00
-
Plotting Log Plots00:01:00
-
Plotting Polar Plots00:02:00
-
Handling Dates00:01:00
-
Creating multiple subplots in one figure00:03:00
-
Introduction00:01:00
-
What is Exploratory Data Analysis?00:01:00
-
Univariate Analysis00:02:00
-
Univariate Analysis: Continuous Data00:06:00
-
Univariate Analysis: Categorical Data00:02:00
-
Bivariate analysis: Categorical & Categorical00:03:00
-
Bivariate analysis: Continuous & Categorical00:02:00
-
Detecting Outliers00:06:00
-
Categorical Variable Transformation00:04:00
-
Introduction to Time Series00:02:00
-
Getting Stock Data using Yfinance00:03:00
-
Converting a Dataset into Time Series00:04:00
-
Working with Time Series00:04:00
-
Time Series Data Visualization with Python00:03:00