Course Curriculum
- 9 sections
- 18 lectures
- 00:00:00 total length
-
Welcome to the course!
00:01:00 -
Introduction to Python
00:01:00 -
Setting up Python
00:02:00 -
What is Jupyter?
00:01:00 -
Anaconda Installation: Windows, Mac & Ubuntu
00:04:00 -
How to implement Python in Jupyter?
00:01:00 -
Managing Directories in Jupyter Notebook
00:03:00 -
Input/Output
00:02:00 -
Working with different datatypes
00:01:00 -
Variables
00:02:00 -
Arithmetic Operators
00:02:00 -
Comparison Operators
00:01:00 -
Logical Operators
00:03:00 -
Conditional statements
00:02:00 -
Loops
00:04:00 -
Sequences: Lists
00:03:00 -
Sequences: Dictionaries
00:03:00 -
Sequences: Tuples
00:01:00 -
Functions: Built-in Functions
00:01:00 -
Functions: User-defined Functions
00:04:00
-
Installing Libraries
00:01:00 -
Importing Libraries
00:02:00 -
Pandas Library for Data Science
00:01:00 -
NumPy Library for Data Science
00:01:00 -
Pandas vs NumPy
00:01:00 -
Matplotlib Library for Data Science
00:01:00 -
Seaborn Library for Data Science
00:01:00
-
Introduction to NumPy arrays
00:01:00 -
Creating NumPy arrays
00:06:00 -
Indexing NumPy arrays
00:06:00 -
Array shape
00:01:00 -
Iterating Over NumPy Arrays
00:05:00
-
Basic NumPy arrays: zeros()
00:02:00 -
Basic NumPy arrays: ones()
00:01:00 -
Basic NumPy arrays: full()
00:01:00 -
Adding a scalar
00:02:00 -
Subtracting a scalar
00:01:00 -
Multiplying by a scalar
00:01:00 -
Dividing by a scalar
00:01:00 -
Raise to a power
00:01:00 -
Transpose
00:01:00 -
Element wise addition
00:02:00 -
Element wise subtraction
00:01:00 -
Element wise multiplication
00:01:00 -
Element wise division
00:01:00 -
Matrix multiplication
00:02:00 -
Statistics
00:03:00
-
What is a Python Pandas DataFrame?
00:01:00 -
What is a Python Pandas Series?
00:01:00 -
DataFrame vs Series
00:01:00 -
Creating a DataFrame using lists
00:03:00 -
Creating a DataFrame using a dictionary
00:01:00 -
Loading CSV data into python
00:02:00 -
Changing the Index Column
00:01:00 -
Inplace
00:01:00 -
Examining the DataFrame: Head & Tail
00:01:00 -
Statistical summary of the DataFrame
00:01:00 -
Slicing rows using bracket operators
00:01:00 -
Indexing columns using bracket operators
00:01:00 -
Boolean list
00:01:00 -
Filtering Rows
00:01:00 -
Filtering rows using & and | operators
00:02:00 -
Filtering data using loc()
00:04:00 -
Filtering data using iloc()
00:02:00 -
Adding and deleting rows and columns
00:03:00 -
Sorting Values
00:02:00 -
Exporting and saving pandas DataFrames
00:02:00 -
Concatenating DataFrames
00:01:00 -
groupby()
00:03:00
-
Introduction to Data Cleaning
00:01:00 -
Quality of Data
00:01:00 -
Examples of Anomalies
00:01:00 -
Median-based Anomaly Detection
00:03:00 -
Mean-based anomaly detection
00:03:00 -
Z-score-based Anomaly Detection
00:03:00 -
Interquartile Range for Anomaly Detection
00:05:00 -
Dealing with missing values
00:06:00 -
Regular Expressions
00:07:00 -
Feature Scaling
00:03:00
-
Introduction
00:01:00 -
Setting Up Matplotlib
00:01:00 -
Plotting Line Plots using Matplotlib
00:02:00 -
Title, Labels & Legend
00:07:00 -
Plotting Histograms
00:01:00 -
Plotting Bar Charts
00:02:00 -
Plotting Pie Charts
00:03:00 -
Plotting Scatter Plots
00:06:00 -
Plotting Log Plots
00:01:00 -
Plotting Polar Plots
00:02:00 -
Handling Dates
00:01:00 -
Creating multiple subplots in one figure
00:03:00
-
Introduction
00:01:00 -
What is Exploratory Data Analysis?
00:01:00 -
Univariate Analysis
00:02:00 -
Univariate Analysis: Continuous Data
00:06:00 -
Univariate Analysis: Categorical Data
00:02:00 -
Bivariate analysis: Categorical & Categorical
00:03:00 -
Bivariate analysis: Continuous & Categorical
00:02:00 -
Detecting Outliers
00:06:00 -
Categorical Variable Transformation
00:04:00
-
Introduction to Time Series
00:02:00 -
Getting Stock Data using Yfinance
00:03:00 -
Converting a Dataset into Time Series
00:04:00 -
Working with Time Series
00:04:00 -
Time Series Data Visualization with Python
00:03:00