Course Curriculum
- 15 sections
- 131 lectures
- 22 hours, 34 minutes total length
-
Introduction00:07:00
-
Building a Data-driven Organization – Introduction00:04:00
-
Data Engineering00:06:00
-
Learning Environment & Course Material00:04:00
-
Movielens Dataset00:03:00
-
Introduction to Relational Databases00:09:00
-
SQL00:05:00
-
Movielens Relational Model00:15:00
-
Movielens Relational Model: Normalization vs Denormalization00:16:00
-
MySQL00:05:00
-
Movielens in MySQL: Database import00:06:00
-
OLTP in RDBMS: CRUD Applications00:17:00
-
Indexes00:16:00
-
Data Warehousing00:15:00
-
Analytical Processing00:17:00
-
Transaction Logs00:06:00
-
Relational Databases – Wrap Up00:03:00
-
Distributed Databases00:07:00
-
CAP Theorem00:10:00
-
BASE00:07:00
-
Other Classifications00:07:00
-
Introduction to KV Stores00:02:00
-
Redis00:04:00
-
Install Redis00:07:00
-
Time Complexity of Algorithm00:05:00
-
Data Structures in Redis : Key & String00:20:00
-
Data Structures in Redis II : Hash & List00:18:00
-
Data structures in Redis III : Set & Sorted Set00:21:00
-
Data structures in Redis IV : Geo & HyperLogLog00:11:00
-
Data structures in Redis V : Pubsub & Transaction00:08:00
-
Modelling Movielens in Redis00:11:00
-
Redis Example in Application00:29:00
-
KV Stores: Wrap Up00:02:00
-
Introduction to Document-Oriented Databases00:05:00
-
MongoDB00:04:00
-
MongoDB Installation00:02:00
-
Movielens in MongoDB00:13:00
-
Movielens in MongoDB: Normalization vs Denormalization00:11:00
-
Movielens in MongoDB: Implementation00:10:00
-
CRUD Operations in MongoDB00:13:00
-
Indexes00:16:00
-
MongoDB Aggregation Query – MapReduce function00:09:00
-
MongoDB Aggregation Query – Aggregation Framework00:16:00
-
Demo: MySQL vs MongoDB. Modeling with Spark00:02:00
-
Document Stores: Wrap Up00:03:00
-
Introduction to Search Engine Stores00:05:00
-
Elasticsearch00:09:00
-
Basic Terms Concepts and Description00:13:00
-
Movielens in Elastisearch00:12:00
-
CRUD in Elasticsearch00:15:00
-
Search Queries in Elasticsearch00:23:00
-
Aggregation Queries in Elasticsearch00:23:00
-
The Elastic Stack (ELK)00:12:00
-
Use case: UFO Sighting in ElasticSearch00:29:00
-
Search Engines: Wrap Up00:04:00
-
Introduction to Columnar databases00:06:00
-
HBase00:07:00
-
HBase Architecture00:09:00
-
HBase Installation00:09:00
-
Apache Zookeeper00:06:00
-
Movielens Data in HBase00:17:00
-
Performing CRUD in HBase00:24:00
-
SQL on HBase – Apache Phoenix00:14:00
-
SQL on HBase – Apache Phoenix – Movielens00:10:00
-
Demo : GeoLife GPS Trajectories00:02:00
-
Wide Column Store: Wrap Up00:05:00
-
Introduction to Time Series00:09:00
-
InfluxDB00:03:00
-
InfluxDB Installation00:07:00
-
InfluxDB Data Model00:07:00
-
Data manipulation in InfluxDB00:17:00
-
TICK Stack I00:12:00
-
TICK Stack II00:23:00
-
Time Series Databases: Wrap Up00:04:00
-
Introduction to Graph Databases00:05:00
-
Modelling in Graph00:14:00
-
Modelling Movielens as a Graph00:10:00
-
Neo4J00:04:00
-
Neo4J installation00:08:00
-
Cypher00:12:00
-
Cypher II00:19:00
-
Movielens in Neo4J: Data Import00:17:00
-
Movielens in Neo4J: Spring Application00:12:00
-
Data Analysis in Graph Databases00:05:00
-
Examples of Graph Algorithms in Neo4J00:18:00
-
Graph Databases: Wrap Up00:07:00
-
Introduction to Big Data With Apache Hadoop00:06:00
-
Big Data Storage in Hadoop (HDFS)00:16:00
-
Big Data Processing : YARN00:11:00
-
Installation00:13:00
-
Data Processing in Hadoop (MapReduce)00:14:00
-
Examples in MapReduce00:25:00
-
Data Processing in Hadoop (Pig)00:12:00
-
Examples in Pig00:21:00
-
Data Processing in Hadoop (Spark)00:23:00
-
Examples in Spark00:23:00
-
Data Analytics with Apache Spark00:09:00
-
Data Compression00:06:00
-
Data serialization and storage formats00:20:00
-
Hadoop: Wrap Up00:07:00
-
Introduction Big Data SQL Engines00:03:00
-
Apache Hive00:10:00
-
Apache Hive : Demonstration00:20:00
-
MPP SQL-on-Hadoop: Introduction00:03:00
-
Impala00:06:00
-
Impala : Demonstration00:18:00
-
PrestoDB00:13:00
-
PrestoDB : Demonstration00:14:00
-
SQL-on-Hadoop: Wrap Up00:02:00
-
Data Architectures00:05:00
-
Introduction to Distributed Commit Logs00:07:00
-
Apache Kafka00:03:00
-
Confluent Platform Installation00:10:00
-
Data Modeling in Kafka I00:13:00
-
Data Modeling in Kafka II00:15:00
-
Data Generation for Testing00:09:00
-
Use case: Toll fee Collection00:04:00
-
Stream processing00:11:00
-
Stream Processing II with Stream + Connect APIs00:19:00
-
Example: Kafka Streams00:15:00
-
KSQL : Streaming Processing in SQL00:04:00
-
KSQL: Example00:14:00
-
Demonstration: NYC Taxi and Fares00:01:00
-
Streaming: Wrap Up00:02:00
-
Database Polyglot00:04:00
-
Extending your knowledge00:08:00
-
Data Visualization00:11:00
-
Building a Data-driven Organization – Conclusion00:07:00
-
Conclusion00:03:00
-
Assignment -SQL NoSQL Big Data and Hadoop
-
Claim Your Certificate