Course Curriculum
- 5 sections
- 10 lectures
- 00:00:00 total length
-
Module 01: Driver installation
00:06:00 -
Module 02: Cuda toolkit installation
00:01:00 -
Module 03: Compile OpenCV from source with CUDA support part-1
00:06:00 -
Module 04: Compile OpenCV from source with CUDA support part-2
00:05:00 -
Module 05: Python environment for flownet2-pytorch
00:09:00
-
Module 01: Read camera & files in a folder (C++)
00:11:00 -
Module 02: Edge detection (C++)
00:08:00 -
Module 03: Color transformations (C++)
00:07:00 -
Module 04: Using a trackbar (C++)
00:06:00 -
Module 05: Image filtering with CUDA (Introduction to using OpenCV GPU methods on C++)
00:13:00
-
Module 01: Background segmentation with MOG (C++)
00:04:00 -
Module 02: MOG and MOG2 cuda implementation (C++ – CUDA)
00:03:00 -
Module 03: Special app: Track class
00:06:00 -
Module 04: Special app: Track bgseg Foreground objects
00:08:00
-
Module 01: A simple application to prepare dataset for object detection (C++)
00:08:00 -
Module 02: Train model with openCV ML module (C++ and CUDA)
00:13:00 -
Module 03: Object detection with openCV ML module (C++ CUDA)
00:06:00
-
Module 01: Optical flow with Farneback (C++)
00:08:00 -
Module 02: Optical flow with Farneback (C++ CUDA)
00:06:00 -
Module 03: Optical flow with Nvidia optical flow SDK (C++ CUDA)
00:05:00 -
Module 04: Optical flow with Nvidia Flownet2 (Python)
00:05:00 -
Module 05: Performance Comparison
00:07:00