Course Curriculum
- 5 sections
- 22 lectures
- 2 hours, 31 minutes total length
-
Module 01: Driver installation00:06:00
-
Module 02: Cuda toolkit installation00:01:00
-
Module 03: Compile OpenCV from source with CUDA support part-100:06:00
-
Module 04: Compile OpenCV from source with CUDA support part-200:05:00
-
Module 05: Python environment for flownet2-pytorch00:09:00
-
Module 01: Read camera & files in a folder (C++)00:11:00
-
Module 02: Edge detection (C++)00:08:00
-
Module 03: Color transformations (C++)00:07:00
-
Module 04: Using a trackbar (C++)00:06:00
-
Module 05: Image filtering with CUDA (Introduction to using OpenCV GPU methods on C++)00:13:00
-
Module 01: Background segmentation with MOG (C++)00:04:00
-
Module 02: MOG and MOG2 cuda implementation (C++ – CUDA)00:03:00
-
Module 03: Special app: Track class00:06:00
-
Module 04: Special app: Track bgseg Foreground objects00:08:00
-
Module 01: A simple application to prepare dataset for object detection (C++)00:08:00
-
Module 02: Train model with openCV ML module (C++ and CUDA)00:13:00
-
Module 03: Object detection with openCV ML module (C++ CUDA)00:06:00
-
Module 01: Optical flow with Farneback (C++)00:08:00
-
Module 02: Optical flow with Farneback (C++ CUDA)00:06:00
-
Module 03: Optical flow with Nvidia optical flow SDK (C++ CUDA)00:05:00
-
Module 04: Optical flow with Nvidia Flownet2 (Python)00:05:00
-
Module 05: Performance Comparison00:07:00